

Concrete, Pictorial and Abstract Calculation Policy

Recommended practice delivering a mastery approach

True mastery aims to develop all children's mathematical understanding at the same pace. As much as possible, children should be accessing the same learning. Differentiation should primarily be through support, scaffolding and deepening, not through task.

Consistency in language is essential for pupils to understand the concepts presented in mathematics. If other, 'child-friendly' terminology is used, this must be alongside the current terminology recommended by maths specialists. Using this will support children with their examinations and throughout secondary school.

Evidence repeatedly shows that mixed ability seating increases less confident pupils' perception of mathematical capability, which impacts positively upon outcomes.

Concrete, pictorial, abstract (CPA) concepts should not be confused as differentiation for lower, middle, higher attaining children. CPA is an approach to be used with the whole class and teachers should promote each area as equally valid.

Times tables

Times tables to be taught formally for 5 to 10 mins at the beginning of each maths lesson. A demonstration of the approach can be found below: https://www.youtube.com/watch? $\mathrm{v}=\mathrm{yXdHGBfogfw}$

Years $1-2,5$ and 10
Year 2-2,5 and 10 including division facts
Year $3-2,5,10,3,4$ and 8 including division facts
Years 4 to 6 - all times tables including division facts (12×12)
Within key stage 2 , children to develop fluency and variation of times table based upon known facts as appropriate to year group expectation for multiplication (see grid multiplication e.g year 3 - multiples of $10 \times$ by digit to support 2 digit x single digit multiplication):

e.g	And
$4 \times 3=12$	$0.4 \times 3=1.2$
So	$4 \times 0.3=1.2$
$40 \times 3=120$	$0.04 \times 3=0.12$
$4 \times 30=120$	etc
$400 \times 3=1200$ etc	

Children to be tested weekly on times table for that week.

Representations used by Year Group (*indicates use)

	Tens Frame	Part Whole	Sticks and Dots	Number Lines	Place Value	Bar Models
EYFS	$*$	$*$				
Y1	$*$	$*$	$*$	$*$		
Y2	$*$	$*$	$*$	$*$		$*$
Y3	$*$	$*$	$*$	$*$	$*$	$*$
Y4	$*$	$*$	$*$	$*$	$*$	$*$
Y5	$*$	$*$	$*$	$*$	$*$	$*$
Y6	$*$	$*$	$*$	$*$	$*$	$*$

Year 1 Addition

Objective	Concrete	Pictorial	Abstract
Combining two parts to make a whole - part, part, whole.	Use of cubes or other manipulatives.	Simple pictures or symbols to represent numbers.	
Starting with the bigger number and counting on.	Starting with the bigger number and counting on 1 by 1 .	Larger part identified.	$\begin{aligned} 7+5 & = \\ & =7+6 \end{aligned}$
Regrouping to make 10.	 Start with bigger number and use number bonds to make ten.	$\begin{aligned} & 7+4= \\ & 7+3+1 \\ & 10+1= \end{aligned}$	$\begin{gathered} 4+7= \\ +\ldots+ \\ + \end{gathered}$

Year 2 Addition
Addition of 1 digit number to a 2
digit number
$14+5=$

Use of base ten, tens frames and straws.

Adding multiples of ten to a 2 digit
number.

Year 3 Addition

Column addition without exchange	Addition Start Addition End $25+13$ Moving onto use of place value counters	H T O 0000 $000 \odot$ $00{ }^{\circ} \mathrm{O}$ $00 \odot$ $\bigcirc 0 \odot$ 00 Display the coulum written method alongside the place value chart repsresentation.	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Adding the ones then the tens and then the hundreds.
Column addition with exchange		As concrete model using printed place value charts and children representing numbers on charts with circles.	
Year 4 to 6 Addition			
Addition of two 4-digit numbers or greater.	Children will continue to add increasingly Year 4 - up to four digits Year 5 and 6 -more than four digits.	larger numbers as per year 3 guidance	

Year 1 Subtraction

Objective	Concrete	Pictorial	Abstract
Taking away ones (Link with addition and number bonds used in part whole models to show inverse)	 tens frame and part whole model.	What does this show? $\begin{array}{ccc}\text { Whole } & \begin{array}{c}\text { Part } \\ \text { (taken) }\end{array} & \begin{array}{c}\text { Part } \\ \text { (left) }\end{array} \\ 10 & 3 & 7\end{array}$ Crossing out of the part to be taken away. \qquad Link to part whole model as inverse of addition.	$10-4=$ $8-\ldots=3$
Making 10	$14-6=$ Take away the four to make ten and then the other two counters.		$\begin{array}{ll} 14-6=- & 13-9=- \\ 14--- & --- \\ 10-\ldots & - \end{array}$

Year 2 Subtraction

Subtracting a 1-digit or 2-digit number from a 2-digit number without exchanging	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	$43-21=22$ Children to draw their own representation of base ten.	$43-21=22$
Subtracting using exchange	Children to be made aware that bundles may need to be separated to be able to subtract. This moves on to the use of base 10 equipment. $64-15=$ \qquad	$23-16=7$ Children to draw their own representation of base ten and then cross out accordingly.	$23-16=7$

Subtraction without exchange	H T 0 \searrow -23 -21 Children to use base 10 and place value charts and then move on to the place value counters.		$\begin{array}{r} 176 \\ = \\ 64 \\ \hline 112 \end{array}$
Subtraction involving exchange	$\begin{array}{r} 133 \\ -26 \\ \hline \end{array}$ Children to use base 10 and place value charts and establish concept on exchange then move on to the place value counters.	 Draw own representations to support calculation.	$\begin{array}{r} 3135 \\ -273 \\ \hline 262 \\ \hline \end{array}$
Year 4-6 Subtraction			
Subtraction of two 4-digit numbers or greater.	Children will continue to subtract increasin Year 4 - up to four digits Year 5 and 6 -more than four digits.	ly larger numbers as per year 3 guidance	
Subtracting decimals	Use of place value charts	Draw own respresentation	$\begin{gathered} 4.1 \\ 5.43 \\ -2.7 \\ \hline 2.73 \\ \hline \end{gathered}$

Year 1 Multiplication

Objective
Repeated addition

Year 3 and 4 Multiplication

$245 \times 4=980$
Using formal column method

Year 1 Division

Year 2 Division

Division as sharing with a
remainder

Children to physically share an amount between pots

Division as grouping no remainder	Tom has 10 cakes. He puts 2 cakes in each box. How many boxes can he fill? \qquad Children to physically draw around the groups.	As concrete method. Children to draw own representations. \qquad \div \qquad $=$ \qquad	$18 \div 3=$
Division as an array	000000 $18 \div 3=6$ Children to have the arrays to then group Children to understand the inverse link to multiplication.	\qquad \times \qquad 2 $=$ \qquad $2 x$ \qquad = \qquad \qquad \div \qquad 2 \qquad \qquad \qquad $=$ 2	$18 \div 3=$
Year 3-6 Division			
The principles apply for division for Years 3 to 6 with ever increasing numbers: Year 4-3 digits by 1 digit Year 5 and 6-4 digits by 1 digit			
Division by sharing with exchange	 Use of place value charts and base ten and counters physically moving counters and exchanging	Develop own representations using place value charts	$52 \div 4=13$ Moving to bus stop method

			$\frac{13}{4}$
Division by grouping with exchange	Use of place value charts	As previous with children drawing own representation.	$\frac{13}{4} \frac{5}{42}$
Division by sharing withexchange and remainders	Use of place value charts and base ten and counters physically moving counters and exchanging	 Develop own representations using place value charts	$53 \div 4=13 r 1$ Moving to bus stop method
Division by grouping with exchange and remainders	Use of place value chart	As previous with children drawing own representation.	$53 \div 4=13 r 1$ Moving to bus stop method

