Mastery Three Unit Overviews: Spring Term 2

Use opportunities as part of the daily routine to tell the time to the nearest minute.
Rehearse known facts related to time such as the number of seconds in a minute, the number of days in each month and year. Discuss common points of reference for time, e.g. length of playtime. At some point in each day, not necessarily the maths lesson, addition and subtraction facts (number bonds) and multiplication and division facts for the $2,3,4,5,8$ and 10 times tables should be rehearsed following guidance provided.

Spring 2 Unit 15 (Week 1): 2-D and 3-D Shape Including Angles		
Lesson	Starter	Lesson Focus
1	Count on and back in ones and tens from any two-digit number (crossing the 100 boundary)	Recognise angles as a description of a turn Recognise quarter-, half-, three-quarter- and full turns from different starting points as an appropriate number of right angles
2	Use a mental partitioning strategy for addition or subtraction of 2 twodigit numbers	Recognise where sides meet at a vertex in a shape that an angle is created Recognise a drawn right angle when presented in any orientation
3	Add and subtract a three-digit number and ones mentally, crossing a hundreds boundary	Identify pairs of perpendicular and parallel lines
4	Recall/derive multiplication facts for the $2,3,4,5,8$ and 10 multiplication tables	Sort 2-D shapes according to their properties - Venn with two intersecting sets and two criteria Carroll diagrams (perpendicular, parallel, right angles)
5	Identifying the bond to the next multiple of 100	Draw 2-D shapes with specific properties (perpendicular, parallel, right angles)

Spring $\mathbf{2}$ Unit $\mathbf{1 6}$ (Week 2): Written Addition and Subtraction in the Context of Statistics		
Lesson	Starter	Lesson Focus
$\mathbf{1}$	Recall addition and subtraction facts for 100 (multiples of 5 and 10)	Add two numbers with three digits using formal written methods of columnar addition with exchange from ones into tens and tens into hundreds, e.g. $468+356$ Use rounding to estimate, and inverse to check, the answer to a calculation
$\mathbf{2}$	Add and subtract a three-digit number and tens mentally, crossing a hundreds boundary	Subtract numbers with three digits using formal written methods of columnar subtraction with exchange from tens into ones and hundreds into tens, e.g. 426 - 357 Use rounding to estimate, and inverse to check, the answer to a calculation
$\mathbf{3}$	Recall pairs of multiples of 100 that make 1000	Solve missing number problems, using number facts, place value, and more complex addition and subtraction
$\mathbf{4}$	Derive addition and subtraction facts for 100 using number lines	Present data using bar charts with a scale in fives or tens Select the most appropriate scale when representing data in a bar chart Interpret information in a bar chart to solve two-step questions

$\mathbf{5}$	Round numbers with up to three digits to the nearest 10	Select the most appropriate key when representing data in a pictogram Interpret information in a pictogram to solve two-step questions

Spring $\mathbf{2}$ Unit $\mathbf{1 7}$ (Weeks $\mathbf{3}$ \& 4): Fractions		
Lesson	Starter	Lesson Focus
$\mathbf{1}$	Use partitioning to derive and use halves of multiples of 10 where the tens digit is odd	Use pictorial representations, including the number line, to compare and order fractions with the same denominator Use pictorial representations to compare and order unit fractions
$\mathbf{2}$	Tell and write the time on an analogue clock to the nearest minute - past and to	Use concrete and pictorial representations to recognise where fractions are equivalent
$\mathbf{3}$	Use multiplication trios to identify missing numbers in multiplication and division number sentences, e.g. $7 \times \square$ =28	Use concrete and pictorial representations to recognise where fractions are equivalent
$\mathbf{4}$	Count on and back in steps of unit fractions with small denominators	Add fractions to make one whole Subtract fractions from one whole
$\mathbf{5}$	Use a mental compensation strategy to add or subtract, e.g. 175 - 39	Add fractions with the same denominator within one whole
$\mathbf{6}$	Use partitioning to derive and use halves of all numbers to 100	Subtract fractions with the same denominator within one whole
$\mathbf{7}$	Use known facts to multiply a multiple of 10 by a single digit number	Add and subtract fractions with the same denominator within one whole

Spring 2 Unit 18 (Week 4): Position and Direction		
Lesson	Starter	Lesson Focus
$\mathbf{1}$	Partition a three-digit number without the use of practical equipment into two groups in different ways where one group is a multiple of 10	Describe positions on a square grid labelled with letters and numbers
$\mathbf{2}$	Multiply T1 by a single digit number	Use a grid to describe position, direction and movement in a straight line

$\mathbf{3}$	Find non-unit fractions of a set of objects within multiplication table knowledge, e.g. $\frac{3}{8}$ of 32	Use a grid to describe position, direction, movement and turn

Spring $\mathbf{2}$ Unit $\mathbf{1 9}$ (Week 5): Time		
Lesson	Starter	Lesson Focus
$\mathbf{1}$	Derive number bonds to 60	Tell the time on an analogue clock for minutes past and to, e.g. 33 minutes past 4 and 27 minutes to 5
$\mathbf{2}$	Add and subtract fractions with the same denominator within one whole	Tell the time on a digital clock to the nearest minute and know whether this is before or after midday
$\mathbf{3}$	Derive number bonds to 60	Solve time problems working within the hour boundary
$\mathbf{4}$	Round numbers with up to three digits to the nearest hundred	Solve time problems working across the hour boundary
$\mathbf{5}$	Identify the number of days in each month	Solve calendar problems working across the month boundary

Spring $\mathbf{2}$ (Week 6): Assess and Review		
Lesson	Starter	Lesson Focus
$\mathbf{1}$	Use Starters this week to revisit and rehearse any of the starters from the previous two half terms that the children have found difficult.	During this week, administer the end of term Arithmetic and Reasoning Tests. These can be administered in whatever way the teacher feels is most beneficial to the children, e.g. as a class, in groups, over multiple days etc. When answering the questions, children should have access to the full kit boxes they have used throughout the term. Any other time this week should be spent revisiting and rehearsing any aspects from the term that children have found difficult.
$\mathbf{3}$	$\mathbf{4}$	

