Red Rose Mastery Maths Scheme: Year 2 Unit Overviews: Spring Term 1

Continue to use the date board as part of daily routine. This will support children with developing their knowledge of time, as well as ordinal numbers.
At some point in each day, not necessarily the maths lesson, times tables facts should be rehearsed following guidance provided.

Spring $\mathbf{1}$ Unit $\mathbf{1 1}$ (Week 1): Number and Place Value		
Lesson	Starter	Lesson Focus
$\mathbf{1}$	Count in different steps - identify patterns and relationships that emerge	Identify what changes and stays the same when 10 is added to or removed from a two-digit number. Describe the rule in a number sequence that counts on or back in tens.
$\mathbf{2}$	Describe the rule in a number sequence that counts on or back in fives or twos	Order three or more two-digit numbers when represented using the same equipment
$\mathbf{3}$	Count in steps of 3 using practical equipment such as counters, cubes arranged as an array	Identify numbers on a beadstring and link to the number line Correctly place a two-digit number on a number line with multiples of 10 labelled
$\mathbf{4}$	Count in steps of 3 using a number track/line/100 square	Correctly place a two-digit number on a number line with multiples of 10 labelled
$\mathbf{5}$	Exchanging ones for tens and tens for ones	Round a two-digit number to the nearest 10, including understanding that where a number is exactly halfway between each multiple of 10, the number rounds up

Spring $\mathbf{1}$ Unit $\mathbf{1 2}$ (Week 2): Measurement		
Lesson	Starter	Lesson Focus
$\mathbf{1}$	Bonds within 10	Choose and use the correct equipment to measure mass e.g. balance scales, kitchen scales (with appropriate scale)
$\mathbf{2}$	Tell the time to o'clock, half past, quarter past, quarter to	Order the values of three or more masses
$\mathbf{3}$	Exchanging ones for tens and tens for ones	Choose and use the correct equipment to measure volume/capacity e.g. measuring cylinders / jugs with appropriate scales
$\mathbf{4}$	Count on and back in steps of $\frac{1}{2}$ as in $\frac{1}{2}, 1,1 \frac{1}{2}$, $2,2 \frac{1}{2^{\prime}} 3$ etc. using images to support.	Order the values of three or more volumes / capacities
$\mathbf{5}$	Name and identify 2-D shapes	Solve simple problems in a practical context involving addition and subtraction of measures

Spring $\mathbf{1}$ Unit $\mathbf{1 3}$ (Week 3): Addition and Subtraction		
Lesson	Starter	Lesson Focus
$\mathbf{1}$	Exchanging ones for tens and tens for ones	Addition with exchange using concrete equipment
$\mathbf{2}$	Read and write numbers to 100 in words	Subtraction with exchange using concrete equipment
$\mathbf{3}$	Use ten frames to explore addition and subtraction facts for all numbers to 20	Subtraction with exchange using concrete equipment
$\mathbf{4}$	Use ten frames to explore addition and subtraction facts for all numbers to 20	Subtraction as difference using concrete materials, counting between the numbers to find the difference and linking to how many more and how many fewer.
$\mathbf{5}$	Tell the time to o'clock, half past, quarter past, quarter to	Solve missing number problems in the forms: $?+\square=\square$ and $?-\square=\square$ using inverse operations. Recognise that $?+3=11$ can be solved by calculating $11-3=? ~ b e c a u s e ~$ 11 is the whole which is made of two parts one of which is 3.
Recognise that ? $-5=9$ can be solved by calculating $9+5=?$		
because two parts which are 9 and 5 go together to create the		
whole.		

$\left.$| Spring $\mathbf{1}$ Unit $\mathbf{1 4}$ (Week 4): Money | Lesson Focus | |
| :--- | :--- | :--- |
| Lesson | Starter | Exchange different coins for other coins of the same value |
| $\mathbf{1}$ | Bonds within 20 | Sort numbers according
 to their properties |
| $\mathbf{2}$ | Recognise that amounts of money can be partitioned in
 different ways (using coins) e.g. 50 p can be 30 p and 20 p or 15p
 and 35p | |
| $\mathbf{a n d}$ tens for ones | | |\quad| For a given value identify how much more can be spent |
| :--- |
| following the purchase of one item |
| e.g. 38p + ? = 50p | \right\rvert\, | Derive and use addition |
| :--- |
| and subtraction facts of |
| multiples of 10 totalling |
| 60 |\quad| Identify combinations which can be bought for a specific |
| :--- |
| amount of money e.g. what two or more items can I buy for |
| exactly 70p? |

Spring 1 Unit 15 (Weeks 5 and 6): Multiplication and Division		
Lesson	Starter	Lesson Focus
1	Recall and use doubles of all multiples of 10 up to 100	Write two different number sentences to represent a repeated addition situation and an array e.g. $5+5+5=15$ or $5 \times 3=15$
2	Identify odd and even numbers by looking at the ones digit and relating even numbers to multiples of 2	Use base 10 equipment to explore the relationship between the halving of a single digit even number to the halving of its related multiple of 10 e.g. half of 6 is 3 and half of 6 tens is 3 tens which is 30 Recall and use halves of all multiples of 10 up to 100 with an even tens digit Use partitioning to halve simple two-digit even numbers (numbers in which the tens are even)
3	Count in steps of 3 using practical equipment and on a number line	Use a sharing strategy to divide an amount equally across sets where there is no remainder and where there is (real life context) Model division number sentences using concrete materials
4	Tell the time to o'clock, half past, quarter past, quarter to	Use a sharing strategy to divide an amount equally across sets where there is no remainder and where there is (real life context) Model division number sentences using concrete materials Recognise that in practical situations the division of one number by another cannot be done in any order because they give different answers
5	Name and identify 3-D shapes	Use a grouping strategy to divide an amount where there is no remainder Use concrete materials to represent division as grouping by creating equal sized groups of a given size from an amount Write a number sentence to represent the amount being grouped, the number in each group and how many groups are created e.g. $20 \div 5=4$
6	Sort shapes according to their properties	Use a grouping strategy to divide an amount where there is no remainder Use concrete materials to represent division as grouping by creating equal sized groups of a given size from an amount Write a number sentence to represent the amount being grouped, the number in each group and how many groups are created e.g. $20 \div 5=4$
7	Exchanging ones for tens and tens for ones	Using an array, show how many groups of a given size can be made from the total (using rows and columns) Write a number sentence to represent the total and the groups of a given size e.g. $20 \div 5=$? understanding this as how many groups of 5 can be made out of 20
8	Partition a two-digit number in different ways	Represent and solve multiplication and division problems using concrete materials
9	Round numbers to the nearest 10	Represent and solve multiplication and division problems using pictorial representations and arrays
10	Learning Check of Spring 1	

