Chocolate Champion

I can use partitioning to multiply a two-digit number by a one-digit number.

Calculate the number of pieces in these chocolate bars using your times table knowledge.
e.g. $4 \times 5=20$, so there are 20 pieces.

1. $8 \times 6=$ \qquad

twinkl

Chocolate Champion

2. $6 \times 7=$

3. $12 \times 8=$ \qquad

4. $9 \times 9=$

Chocolate Champion

Now split the chocolate into tens and ones to find the total number of pieces. Remember to use bracket to show how you calculated the answer.

e.g. $15 \times 5=(10 \times 5)+(5 \times 5)=50+25=75$ pieces.

1. $22 \times 3=(\quad)+(\quad)=$ \qquad $+$ \qquad $=$ \qquad pieces.

2. $25 \times 4=(\quad)+(\quad)=$ \qquad $+$ \qquad $=$ \qquad pieces.

3. $27 \times 2=(\quad)+(\quad)=$ \qquad $+$ \qquad = \qquad pieces.

4. \qquad \times \qquad $=(\quad)+(\quad)=$ \qquad $+$ \qquad $=$ \qquad pieces.

Chocolate Champion Answers

Calculate the number of pieces in these chocolate bars using your times table knowledge.

1. $8 \times 6=48$
2. $6 \times 7=42$
3. $12 \times 8=96$
4. $9 \times 9=81$

Now split the chocolate into tens and ones to find the total number of pieces. Remember to use bracket to show how you calculated the answer.

1. $22 \times 3=(20 \times 3)+(2 \times 3)=60+6=66$ pieces
2. $25 \times 4=(20 \times 4)+(5 \times 4)=80+20=100$ pieces
3. $27 \times 2=(20 \times 2)+(7 \times 2)=40+14=54$ pieces
4. $29 \times 4=(20 \times 4)+(9 \times 4)=80+36=116$ pieces

Chocolate Champion

I can use partitioning to multiply a two-digit number by a one-digit number.

Split the chocolate into tens and ones to find the total number of pieces. Remember to use brackets to show how you calculated the answer. Try to find the answers without drawing the chocolate bars.

1. $26 \times 8=(20 \times 8)+(6 \times 8)=$ \qquad $+$ \qquad = \qquad pieces.
2. $32 \times 4=(30 \times 4)+(2 \times 4)=$ \qquad $+$ \qquad $=$ \qquad pieces.
3. $54 \times 8=($ \qquad $\times 8)+($ \qquad $\times 8)=$ \qquad $+$ \qquad $=$ \qquad pieces.
4. $74 \times 7=($ \qquad \times \qquad) + \qquad \times \qquad) $=$ \qquad $+$ \qquad $=$ \qquad pieces.
5. $62 \times 6=$
6. $38 \times 9=$
7. $41 \times 6=$
8. $92 \times 3=$
9. $77 \times 7=$
10. $86 \times 9=$

Chocolate Champion Answers

Split the chocolate into tens and ones to find the total number of pieces. Remember to use brackets to show how you calculated the answer. Try to find the answers without drawing the chocolate bars.

1. $26 \times 8=(20 \times 8)+(6 \times 8)=\underline{\mathbf{1 6 0}}+\underline{\mathbf{4 8}}=\underline{\mathbf{2 0 8}}$ pieces.
2. $32 \times 4=(30 \times 4)+(2 \times 4)=\underline{120}+\underline{8}=\underline{128}$ pieces.
3. $54 \times 8=(\underline{\mathbf{5 0}} \times 8)+(\underline{\mathbf{4}} \times 8)=\underline{\mathbf{4 0 0}}+\underline{\mathbf{3 2}}=\underline{\mathbf{4 3 2}}$ pieces.
4. $74 \times 7=(\underline{\mathbf{7 0}} \times \underline{\mathbf{7}})+(\underline{\mathbf{4}} \times \underline{\mathbf{7}})=\underline{\mathbf{4 9 0}}+\underline{\mathbf{2 8}}=\underline{\mathbf{5 1 8}}$ pieces.
5. $62 \times 6=\underline{\mathbf{3 7 2}}$
6. $38 \times 9=\underline{\mathbf{3 4 2}}$
7. $41 \times 6=\underline{\mathbf{2 4 6}}$
8. $92 \times 3=\underline{\mathbf{2 7 6}}$
9. $77 \times 7=\underline{\mathbf{5 3 9}}$
$10.86 \times 9=\underline{\mathbf{7 7 4}}$

Chocolate Champion

I can use partitioning to multiply a two-digit number by a one-digit number.

Split the chocolate into tens and ones to find the total number of pieces. Remember to use brackets to show how you calculated the answer. Try to find the answers without drawing the chocolate bars.

e.g. $15 \times 5=(10 \times 5)+(5 \times 5)=50+25=75$ pieces.

1. $46 \times 8=(40 \times 8)+(6 \times 8)=$ \qquad $+$ \qquad = \qquad pieces.
2. $92 \times 4=(90 \times 4)+(2 \times 4)=$ \qquad $+$ \qquad $=$ \qquad pieces.
3. $74 \times 8=($ \qquad $\times 8)+($ \qquad $\times 8)=$ \qquad $+$ \qquad = \qquad pieces.
4. $78 \times 7=($ \qquad \times \qquad) + \qquad \times \qquad) $=$ \qquad $+$ \qquad $=$ \qquad pieces.
5. $84 \times 9=$

Can you work out the missing numbers in these calculations?

1. $35 \times \square=(30 \times \square)+(5 \times \square)=180+\square=210$
2. $3 \square \times 7=(30 \times 7)+(\square \times 7)=210+42=$ \qquad
3. \square $\times 8)+(5 \times \square)=720+40=$
4. $85 \times \square=(80 \times \square)+(5 \times 3)=240+15=$ \qquad
5. $75 \times \square=(70 \times \square)+(5 \times \square)=490+\square=525$
is \qquad
is \qquad
\square is \qquad
\square is \qquad
\square is \qquad

Chocolate Champion Answers

Split the chocolate into tens and ones to find the total number of pieces. Remember to use brackets to show how you calculated the answer. Try to find the answers without drawing the chocolate bars.

1. $46 \times 8=(40 \times 8)+(6 \times 8)=\underline{\mathbf{3 2 0}}+\underline{\mathbf{4 8}}=\underline{\mathbf{3 6 8}}$ pieces.
2. $92 \times 4=(90 \times 4)+(2 \times 4)=\underline{\mathbf{3 6 0}}+\underline{8}=\underline{\mathbf{3 6 8}}$ pieces.
3. $74 \times 8=(\underline{\mathbf{7 0}} \times 8)+(\underline{\mathbf{4}} \times 8)=\underline{\mathbf{5 6 0}}+\underline{\mathbf{3 2}}=\underline{\mathbf{5 9 2}}$ pieces.
4. $78 \times 7=(\underline{\mathbf{7 0}} \times \underline{\mathbf{7}})+(\underline{8} \times \underline{\mathbf{7}})=\underline{\mathbf{4 9 0}}+\underline{\mathbf{5 6}}=\underline{\mathbf{5 4 6}}$ pieces.
5. $84 \times 9=\underline{756}$

Can you work out the missing numbers in these calculations?

1. $35 \times \square=(30 \times \square)+(5 \times \square)=180+\square=210$
2. $3 \square \times 7=(30 \times 7)+(\square \times 7)=210+42=\underline{\mathbf{2 5 2}}$
3. $\square 5 \times 8=(\square \times 8)+(5 \times \square)=720+40=\underline{\mathbf{7 6 0}}$
4. $85 \times \square=(80 \times \square)+(5 \times 3)=240+15=\underline{\mathbf{2 5 5}}$
5. $75 \times \square=(70 \times \square)+(5 \times \square)=490+\square=525$
\square is $\underline{6}$
is 6
is 9
is $\mathbf{3}$
is $\mathbf{7}$
