1) Use the facts at the top of the table to help you complete the other calculations:

$16 \times 20=320$	$42 \times 5=210$
$16 \times 200=$	$420 \times 5=$
$20 \times 160=$	$50 \times 42=$
$160 \times 200=$	$4200 \times 50=$

$450 \div 25=18$	$8600 \div 200=43$
$4500 \div 25=$	$860 \div 20=$
$4500 \div 250=$	$8600 \div 2=$
$2250 \div 25=$	$860 \div 43=$

2) Zara says that she needs to use a formal long multiplication method to complete the calculation 72×50.

Can you find 3 different methods that she could use other than a

formal method, using your knowledge of mental strategies?

1) Cleo has been given this fact:
$\mathbf{7 8 0 0} \div \mathbf{3 0} \mathbf{= 2 6 0}$

She has been asked to solve the calculation
 $7800 \div 3$.

She says that, because 3 is 10 times smaller than 30, the answer must be 10 times smaller too, so $7800 \div 3$ must be 26 .

Cleo is incorrect. Explain why.

2 a) $150 \times 25=15 \times 250$
Prove it!
b) Write down 3 of your own equivalent calculations similar to the one above.

1) In the calculation below, each square represents a missing digit. Find 5 possible solutions to make the statement correct.

You cannot use commutativity (just swapping the order of the numbers), such as $40 \times 320=320 \times 40$.
\square $0=$ $0 \times \square 0$
2) In the calculation below, each square represents a missing digit. Find 5 possible solutions to make the statement correct.
$\square \square 0 \div \square \mathrm{o}=\square \square_{0} \div \square_{0}$

1) Use the facts at the top of the table to help you complete the other calculations:

$16 \times 20=320$	$42 \times 5=210$
$16 \times 200=$	$420 \times 5=$
$20 \times 160=$	$50 \times 42=$
$160 \times 200=$	$4200 \times 50=$

$450 \div 25=18$	$8600 \div 200=43$
$4500 \div 25=$	$860 \div 20=$
$4500 \div 250=$	$8600 \div 2=$
$2250 \div 25=$	$860 \div 43=$

2) Zara says that she needs to use a formal long multiplication method to complete the calculation 72×50.

Can you find 3 different methods that she could use other than a

formal method, using your knowledge of mental strategies?

1) Cleo has been given this fact:
$\mathbf{7 8 0 0} \div \mathbf{3 0}=\mathbf{2 6 0}$

She has been asked to solve the calculation
 $7800 \div 3$.

She says that, because 3 is 10 times smaller than 30, the answer must be 10 times smaller too, so $7800 \div 3$ must be 26 .

Cleo is incorrect. Explain why.

2a) $150 \times 25=15 \times 250$
Prove it!
b) Write down 3 of your own equivalent calculations similar to the one above.

1) In the calculation below, each square represents a missing digit. Find 5 possible solutions to make the statement correct.

You cannot use commutativity (just swapping the order of the numbers), such as $40 \times 320=320 \times 40$.

2) In the calculation below, each square represents a missing digit. Find 5 possible solutions to make the statement correct.$0 \div \square 0=$ \square $0 \div \square$

